منابع مشابه
Structure of spanning trees on the two-dimensional Sierpinski gasket
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملSpanning Forests on the Sierpinski Gasket
We present the numbers of spanning forests on the Sierpinski gasket SGd(n) at stage n with dimension d equal to two, three and four, and determine the asymptotic behaviors. The corresponding results on the generalized Sierpinski gasket SGd,b(n) with d = 2 and b = 3, 4 are obtained. We also derive the upper bounds of the asymptotic growth constants for both SGd and SG2,b.
متن کاملNumber of connected spanning subgraphs on the Sierpinski gasket
We study the number of connected spanning subgraphs fd,b(n) on the generalized Sierpinski gasket SGd,b(n) at stage n with dimension d equal to two, three and four for b = 2, and layer b equal to three and four for d = 2. The upper and lower bounds for the asymptotic growth constant, defined as zSGd,b = limv→∞ ln fd,b(n)/v where v is the number of vertices, on SG2,b(n) with b = 2, 3, 4 are deriv...
متن کاملRandom walks on the Sierpinski Gasket
The generating functions for random walks on the Sierpinski gasket are computed. For closed walks, we investigate the dependence of these functions on location and the bare hopping parameter. They are continuous on the infinite gasket but not differentiable. J. Physique 47 (1986) 1663-1669 OCTOBRE 1986, Classification Physics Abstracts 05.40 05.50 1. Preliminaries and review of known results. C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Physics
سال: 2007
ISSN: 0022-4715,1572-9613
DOI: 10.1007/s10955-006-9262-0